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Abstract 

Access to clean energy is critical for economic development, poverty reduction, and 
enhancing individual well-being, aligning with Sen's capability approach which emphasizes 
the importance of energy services in achieving essential life functions. Despite its 
importance, energy poverty remains underexplored in Latin America, particularly in 
Bolivia. We address this gap by evaluating energy poverty convergence at the municipal 
level in Bolivia from 2012 to 2016. We employ a β-convergence analysis to compare 
observed and expected convergence rates, identifying municipalities that are energy 
poverty pockets—regions with high initial poverty levels and slow improvement rates. Our 
study also characterizes these lagging municipalities and projects their energy poverty 
levels for 2030. Findings from our study aim to inform targeted public policies by 
highlighting regional disparities and providing a nuanced understanding of energy poverty 
dynamics in Bolivia, thereby contributing to more effective interventions aligned with 
national and international development goals. 
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1. Introduction 
 
Access to clean energy sources plays a crucial role in economic development and is 
fundamental for reducing poverty and inequality (Pereira et al., 2011; Acharya & Sadath, 
2019). Energy and well-being are related because energy services enable household 
members to be productive, economically active, and have access to education, among others 
(Alkire et al., 2021). These ideas are in tune with one of the most influential model 
development paradigms, namely Sen's capability approach (1993, 1999). Considering that 
access to energy crucially affects individuals' ability to achieve functioning and expand 
opportunities to live a life they value, energy poverty is understood as the inability to achieve 
essential capabilities due to lack of access to energy services (Day et al., 2012). 
  
Energy poverty reduction has become a central issue in virtually all national and international 
development agendas, and it figures prominently in the 2030 Agenda for Sustainable 
Development – goal 7 aims to ensure access to affordable, clean, and safe energy services 
for all. This has prompted increased efforts to accurately measure the proportion of people 
living in energy poverty, as only timely and robust information has the potential to positively 
influence policy design to address this crucial development issue (Nussbaumer et al., 2012). 
  
While global literature on energy poverty is fast increasing, it is still relatively limited in Latin 
America. In a comprehensive recent literature review Thomson et al. (2022) stress this 
knowledge gap by signaling out only 62 publications related to poverty in the region 
compared with the much more evidence for European countries, with no studies available 
for Bolivia at that time. The need for such an analysis in Bolivia, the poorest country in South 
America, lies in the importance of generating public policies that consider the different 
contexts of various subnational regions. Each region may have different characteristics, such 
as climate, population size, or socioeconomic conditions, which can have differentiated 
effects on the magnitude of energy poverty and its changes over time.  
 
One notable exception presenting rigorous evidence of energy poverty levels in Bolivia is 
Aliaga and Mansilla (2023) who estimated a multidimensional energy poverty index at the 
national level between 2015-2019, considering five dimensions related to energy and 
poverty. They found that energy poverty decreased during the analysis period, but its 
intensity is consistently higher in rural areas. To the best of our knowledge, thus far this is 
the only credible evidence in the literature about a decreasing trend of energy poverty in 
Bolivia, and its degree of geographical inequalities within the country.  
  
One way to delve deeper into the evolution of energy poverty over time is by conducting β-
convergence studies. These studies have primarily been used to analyze economic growth 
patterns across countries and establish convergence when poorer countries experience 
faster economic growth rates than richer ones, leading to a reduction in inequalities over 
time. A similar notion of convergence has been adopted within the field of energy economics. 
Han et al. (2018), for instance, found that the Belt and Road Initiative (BRI) promotes 
convergence in energy efficiency among the countries involved in this initiative, while Peng 



et al. (2022) identified three clubs of energy efficiency convergence in these countries. 
Mishra & Smyth (2014, 2017) conducted studies for ASEAN member countries and Australia, 
finding evidence of convergence in energy consumption in both cases. Liddle (2010) found 
evidence of convergence in energy intensity for a sample of over 100 countries in two 
different periods, while Mudler & De Groot (2012) found that lagging countries are catching 
up with the leading OECD countries. Evidence on the convergence of energy poverty is still 
limited. Only recent studies such as Huang et al. (2022) for 28 European countries, and 
Anastasiou & Zaroutieri (2023) and Salman et al. (2022) for European and developing 
countries respectively, show findings on conditional and unconditional convergence and the 
presence of convergence clubs towards different steady states. 
  
Thus, based on the need to generate more empirical evidence on energy poverty in Bolivia, 
we evaluate energy poverty convergence at the municipal level in Bolivia from 2012 to 2016. 
It compares observed convergence with expected convergence for each municipality and 
identifies municipalities that are lagging behind: those with high initial levels of poverty and 
a slow convergence rate compared to other municipalities. These municipalities are 
considered energy poverty pockets.  
  
Additionally, a characterization of municipalities lagging behind compared to those that are 
not carried out. Finally, a projection of energy poverty levels for those municipalities 
identified as pockets of poverty is made for 2030. 
 
 

2. Literature overview 
 
Energy poverty is a problem that affects households around the world. This has led to the 
study of energy poverty to gain relevance due to the socioeconomic impacts it has on 
people's lives and the need to formulate better informed public policies (Rafi et al., 2021). 
However, currently there is no consensus on a definition of energy poverty, but a distinction 
between developed and developing countries can be found in the literature.  
 
In developed countries, energy poverty is regularly defined as fuel poverty (Lewis, 1982). A 
household is fuel-poor if it cannot afford the necessary amount of fuel required to maintain 
thermal comfort within the household. Boardman (1991) posited that a household that 
needs to spend more than 10% of its total income on fuel costs to achieve an adequate 
indoor temperature is considered fuel-poor. Hills (2011) proposed the definition of Low-
Income High Cost (LIHC) households. Under this definition, a household is fuel-poor if it has 
high energy costs (a bill above the median adjusted by household size), and if, after covering 
these costs, its disposable income falls below the monetary poverty line. Indeed, such high 
relative costs limit the available income to cover other basic needs, so households with low 
incomes, high energy needs, and high additional costs of living the home are considered 
energy-poor (Mahooney et al., 2020). 
 



Importantly, many households in developing countries, especially in rural areas, lack access 
to clean energy. (Siksnelyte-Butkiene et al., 2021; Birol, 2007; Li et al., 2014). One reason for 
this are the barriers to equitable access due to low investment in electrical infrastructure 
(Calvo et al., 2021), leaving a large portion of the population with access to energy only 
through biomass sources, which are primarily used for cooking, boiling water, lighting, and 
heating (Pachauri et al., 2004; WHO, 2006). These sources have been linked to negative 
health effects as they generate indoor air pollution, causing respiratory illness (WHO, 2006; 
Barnes et al., 2011; WHO, 2016). Additionally, there is a high correlation between usage of 
these energy sources and risks to children's school attendance and women's participation in 
the labor market, as they spend part of their time searching for biomass fuels, (WHO, 2006, 
2016; Birol, 2007). Inaccessibility to clean energy sources impacts the most vulnerable 
households the hardest thus exacerbating poverty (Calvo et al., 2021; CEPAL, 2009). 
 
Complementing the concept of energy poverty as the lack of access to electrical grids or its 
high relative cost, another strand of the literature focuses on the amount of energy 
households or individuals need to achieve certain lifestyle outcomes. Thus, energy becomes 
a means through which other goods or services including lighting, heating, or cooking can be 
acquired sustainably (Sovacool et al., 2013).  This idea is in line with a powerful development 
paradigm developed by Sen (1993) known as the capability approach. Deprivation in this 
approach is defined as the shortfall of individuals’ capabilities to achieve functionings such 
as being well-nourished, having good health, being communicated with the rest of the world, 
or having access to remote education.  (Sambodo and Novandra, 2019). 
 
Day et al. (2016) propose a definition of energy poverty within Sen’s capability approach 
enabling one to understand how energy and well-being are interconnected and how energy 
poverty should be understood. Indeed, consumption of energy services is a material 
prerequisite for achieving valuable capabilities, recognizing that energy is necessary for work, 
education, communication, and participation in social life.  
 
Additionally, under Sen’s capability approach it is likely that energy poor households are also 
deprived in various other aspects of well-being (Bartiaux, et al., 2021). Alkire et al., (2021) 
find that among those who lack access to electricity in over 100 developing countries, 83% 
also suffer from housing deprivation, 96% from cooking fuel deprivation, and 83% from 
sanitation deprivation. Simultaneous deprivations between electricity and these indicators 
are higher in rural areas (89%, 98%, and 85% respectively), and there is a gap between those 
simultaneously deprived of electricity and access to potable water in urban and rural areas 
(39% versus 63%).  
Thus, within the literature on energy poverty, the focus is primarily on measurement, its 
implications on well-being (Sambodo & Novandra, 2019), or on the nexus between energy 
poverty and income inequality (Nguyen & Nasir, 2021). Other studies of energy poverty 
evaluate convergence in aspects related to energy access. Li & Lin (2015) found that the 
convergence of energy use and CO2 emissions will have negative effects on economic growth 
in China. Han et al., (2018) found that the Belt and Road Initiative (BRI), through its role in 
trade integration and regional cooperation, could promote energy efficiency among 



countries. Peng et al. (2022) study convergence clubs in energy efficiency for all countries in 
BRI, finding that all countries together diverge, but evidence of the existence of three 
convergence clubs was found, each with different characteristics. 
 
Similarly, there are several studies about convergence in terms of energy consumption. 
Mishra & Smyth (2014) examined conditional convergence for ASEAN countries using unit 
root tests and found that countries with low levels of energy consumption are catching up 
with countries with high levels of energy consumption. Mishra & Smyth (2017) conducted 
the same analysis, but this time for Australia between 1973 and 2014, finding evidence of 
energy consumption convergence in six out of seven sectors in Australia. Other studies 
evaluate convergence of energy intensity. For example, Liddle (2010) conducts the study for 
111 countries between 1971-2006 and 134 countries for 1990-2006, finding in both cases 
continuous convergence at the level of the analyzed countries. Mudler & De Groot (2012) 
assessed convergence in energy intensity for 18 OECD countries and 50 sectors between 
1970-2005 and found that lagging countries are catching up to the leading countries and that 
convergence rates are higher in the services sectors. 
 
Considerably fewer studies evaluate how energy poverty evolves over time within a 
convergence analytical framework. One notable exception is Huang et al. (2022) who carried 
out a study on the convergence of energy poverty in 28 European Union countries between 
2006 and 2008. They find that absolute and conditional convergence is faster in countries 
with higher poverty quantiles. Thus, countries with deeper levels of energy poverty reduce 
energy poverty more rapidly than countries with low levels.  
 
Similarly, Salman et al. (2022) estimate the convergence of (multidimensional) energy 
poverty in 146 countries between 2002 and 2018. They use 33 OECD countries as a reference 
and evaluate the catch-up effect of the 113 developing countries in their study. They do not 
find evidence of overall convergence between these two sets of countries. Finally, Anastasiou 
& Zaroutieri (2023) evaluated the convergence of energy poverty for 27 member countries 
of the European Union between 2005 and 2020. They also reject the null hypothesis of 
convergence, thus finding that countries diverge in the long run.  
 

3. Data and Methods 
a. Data 

 
The main database used for this paper is an anonymized research database, ELBOL, with 
monthly electricity consumption from all residential electricity meters in Bolivia during the 
period 2012 – 2016 (Andersen et al., 2023). It consists of a unique, unbalanced panel data of 
monthly residential electricity consumption data registered by 2.1 million energy meters 
across the country. The dataset contains information from 2012 to 2016, thus consisting of 
approximately 126 million observations.  
 
 



The dataset combines official consumption records from two sources. First is the National 
Interconnected System, which is formed of eight regional electric distribution companies 
that supply electric energy to eight of the nine departmental capital cities – Cobija being the 
exception. These electricity providers account for approximately 93% of electricity supply in 
the country. The rest of the information in the dataset comes from official records in the 
Isolated Energy System formed of 24 small electricity distribution companies. This smaller 
System supplies electricity to areas not served by the National Interconnected System. 
 
The unit of analysis in our study is the municipality. The original ELBOL data was used to 
estimate the mean monthly domestic electricity consumption in 329 out of the 339 
municipalities in Bolivia. We are unable to calculate estimates for 10 municipalities because 
of lack of sufficient data. On one extreme, Table 1 shows that we have full information for 
198 of the 329 municipalities, that is estimates of domestic electricity consumption for every 
month between 2012 and 2016 (60 months). On the other extreme, for 7 municipalities we 
only have information about domestic electricity consumption in 10 months or less within 
this time span. 
 
Table 1: Number of Months for which Meter Information is Available at the Municipal Level 
in Bolivia (2012-2016) 
 

Number of months with available information Number of municipalities 

60 months 198 

between 50 and 59 months 32 

between 40 and 49 months 44 

between 30 and 39 months 31 

between 10 and 29 months 17 

Less than 10 months 7 

Source: Own elaboration 
  
The main dataset of electricity consumption at the municipal level was complemented by 
two variables that define core structural characteristics that are tightly related with their 
average electricity consumption. First, is a set of indicators coming from the 2020 Municipal 
Atlas of the Sustainable Development Goals created by SDSN Bolivia (Andersen et al., 2020). 
With municipal-level information gathered from records, censuses, and satellite data, the 
SDSN Bolivia Atlas consists of 62 indicators related to 17 Sustainable Development Goals. 
 
Second, is the official municipal population projection of the National Statistics Institute 
(INE). Based on population size in the 2012 census (the starting year of the analysis), 
municipalities were classified as type A (less than 5’000 habitants), type B (between 5’001 
and 15’000), type C (15’001 and 50’000), or type D (more than 50’000). Additionally, we 
consider the altitude of each municipality over sea level. This variable is used to classify the 
municipalities into ecological zones which are relatively homogeneous in terms of climate, 
types of agricultural and economic activities, cultural and social habits, and volume of 



precipitation and temperature (Vásquez and Gallardo, 2012). The classification of each 
municipality according to the ecological zone is Andean, Valley, and Lowland municipalities.  
 
Most municipalities in 2012 had a population size between 5,001 and 15,000 inhabitants, 
while the number of municipalities with more than 50,001 inhabitants is considerably smaller 
(see Table 2). The full geographical coverage of our study, and the structural distribution of 
the considered municipalities based on altitude and population size is depicted in Figure 1.  
 
Table 2: Classification of Municipalities according to Region and Population Size as of 2012 

    Population Size 

    

A (up to 
5,000) 

B (5,001 
to 15,000) 

C (15,001 
to 50,000) 

D (more 
than 

50,001) 
Total 

Region- 
Altitude 
(meters 

above sea 
level) 

Highlands: >3000 
m 43 63 29 5 140 

Valleys: between 
1500 and 3000 m 17 41 24 8 90 

Lowlands: < 1500 
m 18 41 35 15 109 

Total 78 145 88 28 339 

 
Source: Own elaboration based on Vásquez and Gallardo (2012), CEGIE, and data from the 
INE and the Municipios of Bolivia website 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 1: Classification of Municipalities according to Region and Population Size as of 2012 

 
 
Source: Own elaboration based on Vásquez and Gallardo (2012), CEGIE, and data from the 
INE and the Municipios of Bolivia website 
 

b. Methods 
 

Measurement of energy poverty levels 
 
To measure energy poverty, we estimate three indices within the 𝐹𝐺𝑇𝛼 class of additively 
decomposable poverty measures proposed by Foster, Greer, and Thorbecke (1984). This 
class of measures is defined as: 

 

𝐹𝐺𝑇𝛼 =  
1

𝑛
 ∑ ⬚

𝑞

𝑖=1

(
𝑧 − 𝑥𝑖

𝑧
)

𝛼

 

 
In our context, 𝑥𝑖  represents the level of monthly electricity consumption recorded by the 
electricity meter corresponding to household 𝑖, and 𝑧 denotes the absolute energy poverty 
line. Thus, the difference 𝑧 − 𝑥𝑖  is positive if meter 𝑖 signals consumption levels 
corresponding to energy poor. The number of households identified as energy poor is 



denoted as 𝑞, and 𝑛 denotes the total number of meters/households in the database. The 
parameter 𝛼 can be interpreted as a measure of poverty aversion, where a larger 𝛼  value 
puts additional emphasis on the poorest of the poor (Foster et al., 1984). 
 
The incidence of energy poverty is measured by 𝐹𝐺𝑇0, and it represents the percentage of 
households with levels of energy consumption below the poverty line. The poverty gap index 
corresponds to 𝐹𝐺𝑇1, and it represents the depth of energy poverty as measured by the 
average relative shortfall of energy consumption from the poverty line among the energy 
poor households. The average squared poverty gap is captured by 𝐹𝐺𝑇2 , and it measures 
the severity of energy poverty, considering not only the distance between consumption and 
the poverty line but also the inequality of gaps among the poor (Foster et al., 2000). The main 
reason for choosing this class of indices as our energy poverty measures is their adherence 
to important poverty measurement axioms (Foster et al., 1984). One of them is subgroup 
decomposability, by which when energy poverty increases in a group or the population, all 
the considered indices will increase as well. Similarly, the monotonicity axiom will always 
hold, as all indices will decrease when household energy consumption among the poor 
households increases. 
 
To set the energy poverty line we use a minimum kWh/month consumption threshold (see 
Table 3). The idea behind these poverty lines is that there is a minimum energy consumption 
level necessary to maintain basic welfare levels (Barnes et al., 2011). The precise calculation 
of these lines is based on engineering calculations that take into account different aspects of 
basic energy-operated equipment and appliances to define the minimum electricity needed 
to meet basic needs (Pachauri et al., 2004). Our definition of these lines is conceptually 
aligned with Pachauri and Spreng (2011), Andersen et al. (2019) and Foster et al. (2000).  
  
Thus, our energy poverty lines are based on the country’s Tarifa Dignidad, an energy bill 
discount policy established in 2006 aiming to facilitate access and use of electricity for 
families with lower economic resources in the residential category, thus addressing the low 
coverage of electrical service (Espinoza and Jiménez, 2012). As of July 2024, this tariff has 
national coverage and consists of a 25% energy bill discount when monthly electricity 
consumption in a household is less than or equal to 180 kWh/month. 
   
Based on Tarifa Dignidad, we define three absolute poverty lines. The first line corresponds 
to 100% of the minimum consumption level in this policy framework (70 kWh/month). Thus, 
households consuming less than 70 kWh/month are identified as energy poor. Our second 
poverty line consists of 50% of the Dignity Tariff (35 kWh/month), and the third line is equal 
to one-fourth of the Dignity Tariff (17.5 kWh/month). The 17.5 kWh/month line was also 
adopted by Andersen et al., (2019), who stress that it merely allows a household to maintain 
connection to 2-3 light bulbs, a radio, and one cell phone. This consumption level can thus 
be considered quite minimal so we posit it as an extreme energy poverty line. 
 
 
 



Table 3: Absolute poverty lines based on “Tarifa Dignidad” 
 

 Consumption kWh/month 

Tarifa Dignidad (100%) 70  

Tarifa Dignidad (50%) 35  

Tarifa Dignidad (25%) 17.5  

 
Assessing convergence of energy poverty levels  

 
Building on the available data, we estimate monthly levels of energy poverty at the municipal 
level from January 2012 to December 2016. We feed these panel data into a β-convergence 
framework drawing directly from the seminal economic growth rate convergence analysis by 
Barro et al. (1991) and Barro and Sala-i-Martin (1992). We thus assess whether energy 
poverty is converging towards a common steady state in the country. There is evidence for 
β-convergence if energy poverty decreases more rapidly in municipalities with higher initial 
levels of energy poverty compared with municipalities with lower levels of energy poverty 
initially (see Huang et al. 2022 for a similar adaptation of the notion of β–convergence). 
  
We study the two most well-known notions of β-convergence, namely absolute and 
conditional convergence (see Barro et al. (1991) and Barro and Sala-i-Martin (1992)). In our 
context, absolute convergence implies that energy poverty levels converge towards the 
same steady state across all municipalities, and thus inequalities in terms of energy poverty 
levels tend to reduce over time, ceteris paribus. The notion of conditional convergence opens 
up the possibility of having different steady states of energy poverty for different groups of 
municipalities. In this case, only municipalities with similar structural characteristics converge 
to the same steady state of energy poverty. (Barro and Sala-i-Martin, 1992). 
  
We thus estimate the same equation in Barro and Sala-i-Martin (1992) to establish whether 
there is absolute convergence in terms of energy poverty across municipalities, 

 
1

𝑇𝑖
𝑙𝑛 (

𝑦𝑖,𝑡0+𝑇𝑖

𝑦𝑖,𝑡0

) =  𝑎 −  𝑏 𝑙𝑛(𝑦𝑖,𝑡0
)  +  𝑢𝑖         (1)     

 
where 𝑦𝑖,𝑡0

 represents the level of energy poverty in municipality i that we observe in the 

span covered by out study, and 𝑡0 is the month of the first observation (normally January, 
2012). Note that 𝑦 can be any of the 𝐹𝐺𝑇𝛼  indices defined previously. 𝑇𝑖 represents the 
number of months in which we observe 𝑦 for municipality i (generally, 60 months), and 𝑢𝑖  
represents the usual error term in a regression framework with zero mean and time-constant 
heteroscedastic variance.   
  



In our case, changes of the ratio (
𝑦𝑖,𝑡0+𝑇𝑖

𝑦𝑖,𝑡0

) over time represents the relative rate of change of 

energy poverty levels, which are expected to be negative in general, depicting energy poverty 
reduction patterns. Thus convergence exists in our framework if municipalities with higher 

initial levels of energy poverty have a more negative change of the ratio (
𝑦𝑖,𝑡0+𝑇𝑖

𝑦𝑖,𝑡0

) over time, 

that is, they reduce poverty faster. This requires coefficient b in equation (1) to be positive 
(Young et al., 2008; Janekalne, 2016). 
 
For a robustness check, we also estimate a version of equation (1) including a set of control 
variables 𝑥𝑖,𝑡0

 including population growth, classification by population size, and 

classification by altitude. These controls are associated with parameter vector c and they 
allow us to establish if structural municipal characteristics define specific steady states for 
groups of municipalities, thus bringing in the notion of conditional convergence: 
  

1

𝑇𝑖
𝑙𝑛 (

𝑦𝑖,𝑡0+𝑇𝑖

𝑦𝑖,𝑡0

) =  𝑎 −  𝑏𝑙𝑛𝑦𝑖,𝑡0
 +   𝑐𝑥𝑖,𝑡0

+ 𝑣𝑖          (2)    

 
In equation (2), the parameter of interest remains b. Here too, if b is positive then we can 
establish the existence of conditional convergence across municipalities.  

 
Trends and pockets of poverty 

 
Estimating equations (1) and (2) is sufficient to establish the existence of absolute or 
conditional convergence, respectively. Taking a step further, we aim to determine if there 
are municipalities that are systematically lagging behind the rest in terms of their pace of 
energy poverty reduction. We refer to these municipalities as pockets of energy poverty. It 
is possible to use the parameters of the absolute convergence equation (1) to identify these 
municipalities. Note that if there is significant evidence for absolute convergence, then after 
estimating equation (1) it is possible to estimate the expected monthly rate of reduction in 

energy poverty for each municipality (denoted as �̂�𝑖
𝑙𝑖𝑛) given the national context (captured 

through the model’s parameters) and its initial level of energy poverty: 
 

�̂�𝑖
𝑙𝑖𝑛 ≡  

1

𝑇𝑖
𝑙𝑛 (

𝑦𝑖,𝑡0+𝑇𝑖

𝑦𝑖,𝑡0

)  =  �̂� – �̂� 𝑙𝑛(𝑦𝑖,𝑡0
)     (3)   

 

The rate �̂�𝑖
𝑙𝑖𝑛represents the annual absolute change in the measure of energy poverty 

between 𝑡0 and 𝑇𝑖 associated with a linear trajectory of this variable – hence the superscript 
lin in its definition. From this expected rate of energy poverty reduction with a linear 
trajectory, it is possible to deduce the corresponding expected reduction rate adjusted by a 
logistic model (see Alkire et al., 2023): 
  

𝛽𝑖
𝑙𝑜𝑔 ∗

=
�̂�𝑖

𝑙𝑖𝑛

𝑦𝑖,𝑡0(1−𝑦𝑖,𝑡0)
   (4)   



 
The adjusted rate defined in equation (4) represents the speed of reduction adjusted for the 
initial level of energy poverty in municipality i and the distance to the ideal situation where 
there is no poverty in that municipality. Since the rate calculated in equation (4) is calculated 
using the cross-municipality regression (1), it captures the expected behavior of poverty in 
municipality i given its situation with respect to all the other municipalities. With this 
equivalence, our methodological strategy to identify pockets of energy poverty consists of 

comparing the expected poverty reduction rate for each municipality i, 𝛽𝑖
𝑙𝑜𝑔 ∗

, with the 

observed rate of reduction in energy poverty, calculated solely from the specific energy 

poverty levels of that municipality, denoted as 𝛽𝑖
𝑙𝑜𝑔 

. Making use of all the available 

information to identify seasonal variations in the trajectories, 𝛽𝑖
𝑙𝑜𝑔 

 is calculated as the mean 

of monthly poverty rates deduced from calibrations of specific logistic models for each 
municipality i and month m (see Alkire et al., 2023):  
 

𝑦𝑖,𝑡,𝑚 =  
1

1 + 𝑒𝑥𝑝 (−𝛼
𝑖,𝑚
𝑙𝑜𝑔

+𝛽
𝑖,𝑚
𝑙𝑜𝑔

)
    (5)      

 
Thus: 
 

𝛽𝑖
𝑙𝑜𝑔 

= 𝐸[𝛽𝑖,𝑚
𝑙𝑜𝑔

] = 𝐸 [ 
1

𝑇𝑖
𝑚−𝑡0

𝑚 [𝑙𝑜𝑔𝑖𝑡 (𝑦𝑖,𝑇𝑖
𝑚)  − 𝑙𝑜𝑔𝑖𝑡 (𝑦𝑖,𝑡0

𝑚) ]]     (6)   

 
where m denotes the month, 𝑦𝑖,𝑡0

𝑚  is the initial observation of the energy poverty indicator 

for municipality i in month m (which typically occurs in 2012), and 𝑦𝑖,𝑇𝑖
𝑚 is the corresponding 

final observation in the dataset (which typically occurs in December 2016). The logit operator 

denotes the logistic transformation such that 𝑙𝑜𝑔𝑖𝑡(𝑦𝑖,𝑡0
𝑚) = −𝑙𝑛 (

1−𝑦
𝑖,𝑡0

𝑚

𝑦𝑖,𝑡0
𝑚

)  and 

𝑙𝑜𝑔𝑖𝑡(𝑦𝑖,𝑇𝑖
𝑚) = −𝑙𝑛 (

1−𝑦
𝑖,𝑇𝑖

𝑚

𝑦𝑖,𝑇𝑖
𝑚

) . The logistic transformation has the advantage of respecting 

the limits of each of the energy poverty indices used in this study, as all three indices are 
within the interval 0 – 1 (see Alkire et al., 2023). Also, this transformation is adopted for its 
adequacy to reproduce smooth trajectories for municipalities with particularly high levels of 
energy poverty in both the initial and last periods of observation. 
  

Note that the observed poverty reduction rate 𝛽𝑖
𝑙𝑜𝑔

 takes a more negative value for 

municipalities that have reduced poverty the fastest, which is a positive trait. With this in 

mind, all municipalities can be classified into two groups based on 𝛽𝑖
𝑙𝑜𝑔

: i) those with an 

observed rate of poverty reduction below the median (good performers), and ii) those with 
an observed rate above the median (not good performers). Similarly, we can establish a 

complementary classification based on the expected poverty reduction rate 𝛽𝑖
𝑙𝑜𝑔∗ 

. Again, 

more negative values of this rate denote faster expected poverty reduction rates. Moreover, 
note that there is a negative relationship between this rate and initial poverty levels given by 



equation (2) – higher initial poverty rates have more negative values of 𝛽𝑖
𝑙𝑜𝑔∗ 

. Thus, all 

municipalities are, in turn, classified into i) those with an expected rate below the median 
(high levels of initial poverty rates), and ii) those with an expected rate of energy poverty 
reduction above the median (low levels of initial poverty rates). These two classifications 
allow each municipality to be regrouped according to the observed rate of poverty reduction 
and the expected reduction rate given the convergence pattern (which denotes its initial 
poverty levels). The four groups considered in this study are presented in Table 4 below: 
 
Table 4: Classification of Municipalities  

Group 1 
Below-median observed reduction rate 
and below-median expected reduction 
rate 

Fast-progressing municipalities, 
departing from relatively high 
poverty levels 

Group 2 
Above-median observed reduction rate 
and above-median expected reduction 
rate 

Slow-progressing municipalities, 
departing from relatively low poverty 
levels 

Group 3 
(Pockets of 
energy poverty) 

Above-median observed reduction rate 
and below-median expected reduction 
rate 

Slow-progressing municipalities, 
departing from relatively high 
poverty levels 

Group 4 Below-median observed rate and 
above-median expected reduction rate 

Fast-progressing municipalities, 
departing from relatively low poverty 
levels 

Source: Own elaboration 
 

In Figure 2 we observe the different groups of municipalities. Municipalities like 
Independencia, Acasio and Incahuasi are classified as energy poverty pockets since their 
observed rate of reduction of energy poverty is above median (green dashed line) and also 
their expected rate of reduction is below median (green dashed line). On the other hand, 
municipalities like Oruro or Sucre, were not good performers in terms of observed poverty 
reduction rates, but they had low initial levels of energy poverty, therefore are classified in 
Group 2.  
 
 
 
 
 
 
 
 
 



Figure 2: Observed and expected β with 25% of Tarifa Dignidad as poverty line 
 

 
Source: Own elaboration 

 

4. Results 
a. Levels of energy poverty 

 
Let’s first examine the levels and changes in energy poverty incidence (FGT0) according to 
our three absolute poverty lines: 100% of Tarifa Dignidad (Panel 1), 50% (Panel 2), and 25% 
(Panel 3). Initial levels of energy poverty are shown in the blue-shaded maps in Figure 3, 
while changes over time are depicted as total absolute changes in the orange-shaded maps. 
High incidences of energy poverty are heavily concentrated in the Highlands and the Valley, 
regardless of the poverty line. In this regard, the broad geographic distribution of energy 
poverty mirrors that of monetary poverty (see Arias and Robles, 2015). It is also important 
to note that the incidence of extreme energy poverty (consumption < 25 kWh/month) has 
largely decreased over time. This is true for 201 out of 327 municipalities, some of which had 
poverty incidence levels exceeding 80% in the initial observation. 
 
 
 
 
 
 
  



Figure 3: FGT0 for the first observation and absolute change for the last observation (%) 

 
 
Source: Own elaboration 

 
 
 
 
 
 



b. Convergence 
 
Table 5 presents the results of estimating β-convergence using the intermediate poverty line 
of 70 kWh/month. The first column presents compelling evidence of absolute convergence, 
showing that energy poverty disparities across municipalities have decreased over time. 
Columns 2 through 7, which include additional variables to gauge conditional convergence, 
reveal that municipalities with similar structural characteristics converge to different steady 
states in the long run. All our results are consistent with one crucial finding: municipalities 
with higher initial levels of energy poverty experience a more rapid reduction in energy 
poverty compared to those with lower initial levels, irrespective of the notion of convergence 
or the controls used to identify distinct steady states. This observation aligns with the results 
of Huang et al. (2022), who also identify both absolute and conditional convergence in energy 
poverty when examining beta-convergence across 28 countries in the European Union. 
 
Table 5: Unconditional Beta Convergence - Conditional Poverty Incidence FGT0with 100% 
Tarifa Dignidad 

 

 (1) (2) (3) (4) (5) (6) (7) 

 Δ FGT0 Δ FGT0  Δ FGT0 Δ FGT0  Δ FGT0 Δ FGT0 Δ FGT0 

FGT0P1 -
0.0016**
* 

-
0.0014**
* 

-
0.0020**
* 

-
0.0037**
* 

-
0.0047**
* 

-
0.0032**
* 

-
0.0042**
* 

 (-3.64) (-2.75) (-3.15) (-5.67) (-5.37) (-5.03) (-5.64) 

        

Δ Pop  0.0000    0.0001 0.0001 

  (0.33)    (1.05) (1.25) 

        

B   -0.0004  -0.0002  -0.0003 

   (-0.71)  (-0.36)  (-0.61) 

        

C   -0.0007  -0.0006  -0.0007 

   (-1.13)  (-1.03)  (-1.23) 

        



D   -0.0013  -
0.0022** 

 -
0.0025** 

   (-1.53)  (-2.36)  (-2.44) 

        

Valleys    -
0.0005** 

-
0.0005** 

-
0.0006** 

-
0.0007** 

    (-2.03) (-2.19) (-2.11) (-2.36) 

        

Lowlands    -
0.0030**
* 

-
0.0033**
* 

-
0.0033**
* 

-
0.0037**
* 

    (-4.78) (-5.13) (-4.94) (-5.22) 

        

Constant -
0.0010**
* 

-
0.0010**
* 

-0.0007* -
0.0007**
* 

-0.0005 -
0.0006**
* 

-0.0003 

 (-6.29) (-5.73) (-1.94) (-5.21) (-1.56) (-3.08) (-0.55) 

N 320 320 320 320 320 320 320 

R2 0.055 0.057 0.066 0.165 0.195 0.179 0.215 

 
 

t statistics in parentheses 
* p<0.10, ** p<0.05, *** p<0.010 
 
Tables A1 and A2 in the appendix show the results of β-convergence estimation with energy 
poverty incidence calculated using 50% and 25% of the Tarifa Dignidad, respectively. 
Consistent with the previous findings, these tables provide evidence of absolute convergence 
in the first column, and conditional convergence in columns 2 through 7. Thus, we show that 
convergence exists also irrespective of the chosen energy poverty line.  
 

c. Pockets of poverty 
 

Table 6 shows the number of municipalities classified into each of the four groups based on 
their energy poverty reduction rates and initial incidence levels. Importantly, to be 
categorized as an energy poverty pocket (Group 3), a municipality must be identified as part 



of this group under at least two different energy poverty lines. Our results identify 64 
municipalities as energy poverty pockets, with 43 located in the Highlands and 20 in the 
Valleys and one in the Lowlands. Nearly 50 % of these municipalities have populations of less 
than 15,000. Overall, they are home to 806’000 approximately.  
  
The majority of municipalities —97 out of 327— experienced slow progress but started from 
relatively low poverty levels. Among these, 51 are in the Lowlands, 31 in the Valleys, and 15 
in the Highlands. In contrast, 92 municipalities that, despite starting from relatively high 
poverty levels, made rapid progress in reducing energy poverty are predominantly located in 
the Highlands (66 municipalities). These municipalities make up one-quarter of all 
municipalities, which supports our convergence results. 
 
 
Table 6: Number of municipalities classified into each of the four categories based on their 
poverty reduction rate and initial incidence situation with at least two lines of energy 
poverty. 
 

1) Fast-progressing municipalities, departing 
from relatively high poverty levels 

92 

2) Slow-progressing municipalities, departing 
from relatively low poverty levels 

97 

3) Slow-progressing municipalities, departing 
from relatively high poverty levels (Poverty 
pockets) 

64 

4) Fast-progressing municipalities, departing 
from relatively low poverty levels 

64 

No classification  3 

Source: Own elaboration 
 

 
Figure 4 illustrates the classification of each municipality. As previously noted, the majority 
of municipalities identified as energy poverty pockets are concentrated in the Highlands and 
Valley regions. In terms of population size, 12 municipalities had populations of less than 
5,000 in 2016, 32 municipalities had populations ranging from 5,001 to 15,000, and 20 
municipalities had populations between 15,001 and 50,000. Additionally, municipalities that 
started from relatively low poverty levels (groups 2 and 4) are predominantly located in the 
Lowlands. 
 
 



Figure 4: Municipalities classified into each of the four categories based on their poverty 
reduction rate and initial incidence situation with at least two lines of energy poverty. 

 

 
Source: Own elaboration 

 
d. Expected trajectories of poverty incidence in municipalities classified energy 

poverty pockets  
 
Having identified the energy poverty pockets municipalities, we now estimate their expected 
trajectories of poverty levels. For this, we project the incidence, depth and severity of 
extreme energy poverty (calculated with a 17.5 kWh/month poverty line). Our aim is to 
identify the pockets of poverty that can be expected to reach the goal of reducing poverty in 
half by 2030, and those that are not. 
 
Regarding the incidence of extreme energy poverty in Table 7, we find that 25 out of 64 
poverty pockets are expected to increase the percentage of households that live in extreme 
poverty by 2030 if the observed trends continue. This is aligned with the results found by the 
International Energy Agency (2010), who based on projections of access to electricity, argue 



that more people will lack electricity by 2030 if efforts to reduce poverty continue to be 
insufficient around the world, and in Latin America nearly 31 million people will lack access 
to electricity and 85 million people will still rely in biomass for cooking.  
 
The remaining 39 poverty pockets are expected to reduce extreme poverty incidence by 
2030 if observed trends continue. Of those, 10 are poised meet the 2030 goal; these 10 
municipalities are some of the most populous ones (more than 15,000 habitants), with the 
exception of Villa Abecio, (under 5,000). Moreover, seven of them are located in the 
highlands and three in the valleys.  
 
With respect to the poverty gap index (FGT1), 19 poverty pockets are expected to increase 
the depth of energy poverty. As a result, energy poor households within this set of 
municipalities are expected to further reduce their energy consumption by 2030, widening 
the gap between their energy consumption levels and the extreme energy poverty line. This 
index provides a more comprehensive overview of energy deprivation, as highlighted by 
(Croon et al., 2023), who emphasize the need of an index that helps the design and 
monitoring of energy poverty reduction policies.  
 
The other 45 poverty pockets are expected to bridge the average gap in consumption with 
respect to the extreme energy poverty line. Of these, 12 municipalities are poised to 
decrease the depth of poverty by more than half, meaning that households within these 
municipalities will significantly increase their energy consumption. 
 
Finally, we find that 13 poverty pockets are expected to increase their average severity of 
energy poverty (FGT2) by 2030. The increase in the severity of energy poverty will be a result 
of a greater gap between the energy consumption and the energy poverty line of the poorest 
households within the energy poor municipalities. This will result in greater levels of 
inequality, given that the poorest households will register less energy consumption. This 
result is aligned with Ye and Koch (2021) who identified households in the lowest decile of 
the income distribution in South Africa had the greater severity of energy poverty.  
 
The remaining 51 poverty pockets are expected to reduce the severity of energy poverty, 
meaning their levels of inequality measured will fall. In fact, 13 out of 64 poverty pockets are 
expected to reduce the severity of poverty by half until 2030.  
 
Table 7: Expected trajectories incidence, gap, and severity of energy poverty for 
municipalities classified as energy poverty pockets  
 

      FGT0  FGT1 FGT2 

Munici
pality 

Altit
ude  

Populat
ion Size 

201
5 

203
0 

Diff
eren
ce 

203
0 

Inc
rea
se 

201
5 

203
0 

Diff
ere
nce 

20
30 

Inc
re

20
15 

20
30 

Diff
ere
nce 

20
30 

Incr
eas
e 



Go
al 

Go
al 

as
e 

Go
al 

Tinguip
aya 

Highl
ands 

C 
31.3

% 
31.5

% 
0.2

% 
0 1 

58.9
% 

17.8
% 

-
41.2

% 
1 0 

70.
5% 

20.
1% 

-
50.
4% 

1 0 

Ravelo 
Highl
ands 

C 
29.7

% 
31.2

% 
1.4

% 
0 1 

58.7
% 

49.7
% 

-
9.0

% 
0 0 

70.
9% 

60.
9% 

-
10.
0% 

0 0 

Huacha
calla 

Highl
ands 

A 
50.1

% 
53.4

% 
3.3

% 
0 1 

68.8
% 

69.0
% 

0.2
% 

0 1 
76.
7% 

75.
8% 

-
0.9

% 
0 0 

Toledo 
Highl
ands 

B 
53.6

% 
60.2

% 
6.6

% 
0 1 

72.6
% 

70.8
% 

-
1.9

% 
0 0 

80.
1% 

74.
8% 

-
5.4

% 
0 0 

San 
Pablo 
de 
Lípez 

Highl
ands 

A 
49.7

% 
56.9

% 
7.2

% 
0 1 

70.1
% 

72.1
% 

2.0
% 

0 1 
78.
1% 

77.
6% 

-
0.6

% 
0 0 

Tiraque 
Highl
ands 

C 
60.0

% 
68.5

% 
8.5

% 
0 1 

79.0
% 

81.8
% 

2.8
% 

0 1 
85.
6% 

86.
4% 

0.8
% 

0 1 

Nazaca
ra de 
Pacajes 

Highl
ands 

A 
24.0

% 
33.0

% 
9.0

% 
0 1 

48.9
% 

27.8
% 

-
21.1

% 
0 0 

60.
5% 

30.
0% 

-
30.
6% 

1 0 

Villa de 
Sacaca 

Highl
ands 

C 
46.8

% 
56.5

% 
9.7

% 
0 1 

78.1
% 

68.9
% 

-
9.2

% 
0 0 

87.
5% 

77.
3% 

-
10.
3% 

0 0 

Vacas 
Highl
ands 

B 
40.3

% 
51.6

% 
11.3

% 
0 1 

64.9
% 

68.3
% 

3.4
% 

0 1 
74.
6% 

75.
1% 

0.5
% 

0 1 

Tacopa
ya 

Highl
ands 

B 
19.1

% 
31.8

% 
12.7

% 
0 1 

51.8
% 

55.3
% 

3.5
% 

0 1 
65.
6% 

65.
2% 

-
0.4

% 
0 0 

Ocurí 
Highl
ands 

C 
37.2

% 
52.4

% 
15.1

% 
0 1 

64.5
% 

72.1
% 

7.6
% 

0 1 
75.
6% 

83.
4% 

7.9
% 

0 1 

Yocalla 
Highl
ands 

B 
46.9

% 
72.6

% 
25.6

% 
0 1 

74.0
% 

83.8
% 

9.9
% 

0 1 
83.
1% 

84.
5% 

1.4
% 

0 1 



Chayan
ta 

Highl
ands 

C 
42.6

% 
73.0

% 
30.4

% 
0 1 

73.5
% 

92.7
% 

19.2
% 

0 1 
84.
3% 

97.
2% 

12.
9% 

0 1 

Chaquí 
Highl
ands 

B 
58.6

% 
90.8

% 
32.1

% 
0 1 

82.5
% 

97.3
% 

14.8
% 

0 1 
89.
7% 

98.
3% 

8.6
% 

0 1 

Cruz de 
Macha
camarc
a 

Highl
ands 

A 
27.9

% 
67.9

% 
40.0

% 
0 1 

50.0
% 

78.6
% 

28.6
% 

0 1 
60.
9% 

80.
9% 

19.
9% 

0 1 

Carana
vi 

Lowl
ands 

C 
59.0

% 
67.7

% 
8.7

% 
0 1 

76.5
% 

81.1
% 

4.6
% 

0 1 
83.
2% 

86.
2% 

2.9
% 

0 1 

Indepe
ndenci
a 

Valle
s 

C 
38.1

% 
49.4

% 
11.3

% 
0 1 

64.3
% 

66.4
% 

2.1
% 

0 1 
74.
8% 

74.
2% 

-
0.5

% 
0 0 

Totora 
Valle
ys 

C 
51.0

% 
51.4

% 
0.4

% 
0 1 

72.6
% 

66.7
% 

-
5.9

% 
0 0 

80.
7% 

73.
8% 

-
6.9

% 
0 0 

Arque 
Valle
ys 

B 
38.8

% 
39.9

% 
1.1

% 
0 1 

65.2
% 

64.6
% 

-
0.6

% 
0 0 

75.
7% 

73.
8% 

-
2.0

% 
0 0 

Icla 
Valle
ys 

B 
44.2

% 
47.3

% 
3.1

% 
0 1 

69.3
% 

62.0
% 

-
7.3

% 
0 0 

78.
7% 

69.
1% 

-
9.6

% 
0 0 

Pojo 
Valle
ys 

B 
53.2

% 
56.6

% 
3.5

% 
0 1 

74.5
% 

71.5
% 

-
3.0

% 
0 0 

82.
3% 

78.
4% 

-
3.9

% 
0 0 

Vila 
Vila 

Valle
ys 

A 
43.7

% 
52.6

% 
8.9

% 
0 1 

67.3
% 

67.5
% 

0.2
% 

0 1 
76.
6% 

73.
8% 

-
2.8

% 
0 0 

Villa 
Alcalá 

Valle
ys 

A 
46.8

% 
55.9

% 
9.1

% 
0 1 

67.7
% 

72.9
% 

5.2
% 

0 1 
76.
1% 

78.
9% 

2.7
% 

0 1 

Tacoba
mba 

Valle
ys 

B 
59.4

% 
73.3

% 
13.9

% 
0 1 

83.5
% 

90.2
% 

6.7
% 

0 1 
91.
1% 

93.
3% 

2.2
% 

0 1 

Tapaca
rí 

Valle
ys 

C 
39.8

% 
57.3

% 
17.5

% 
0 1 

65.6
% 

74.9
% 

9.3
% 

0 1 
75.
6% 

81.
3% 

5.7
% 

0 1 



Uncía 
Highl
ands 

C 
64.1

% 
21.4

% 

-
42.7

% 
1 0 

78.9
% 

10.0
% 

-
68.9

% 
1 0 

84.
6% 

5.2
% 

-
79.
4% 

1 0 

Colque
ncha 

Highl
ands 

B 
58.4

% 
17.0

% 

-
41.3

% 
1 0 

78.5
% 

18.5
% 

-
60.0

% 
1 0 

85.
7% 

17.
7% 

-
67.
9% 

1 0 

San 
Pedro 
de 
Curahu
ara 

Highl
ands 

B 
43.4

% 
7.3% 

-
36.1

% 
1 0 

66.7
% 

14.6
% 

-
52.2

% 
1 0 

76.
8% 

17.
3% 

-
59.
5% 

1 0 

Mocom
oco 

Highl
ands 

B 
33.1

% 
0.2% 

-
32.9

% 
1 0 

62.5
% 

2.4% 
-

60.1
% 

1 0 
73.
9% 

6.2
% 

-
67.
7% 

1 0 

Achaca
chi 

Highl
ands 

C 
55.5

% 
24.6

% 

-
31.0

% 
1 0 

75.5
% 

45.3
% 

-
30.2

% 
0 0 

82.
9% 

56.
1% 

-
26.
7% 

0 0 

Villa 
Abecia 

Highl
ands 

A 
53.8

% 
23.0

% 

-
30.8

% 
1 0 

72.4
% 

33.2
% 

-
39.2

% 
1 0 

79.
8% 

37.
8% 

-
42.
0% 

1 0 

San 
Pedro 
de 
Totora 

Highl
ands 

B 
30.1

% 
3.5% 

-
26.6

% 
1 0 

58.8
% 

6.8% 
-

52.0
% 

1 0 
70.
1% 

8.4
% 

-
61.
7% 

1 0 

Eucalip
tus 

Highl
ands 

B 
47.4

% 
25.3

% 

-
22.1

% 
0 0 

70.9
% 

45.6
% 

-
25.3

% 
0 0 

79.
6% 

53.
5% 

-
26.
1% 

0 0 

Challap
ata 

Highl
ands 

C 
62.0

% 
42.0

% 

-
19.9

% 
0 0 

79.0
% 

60.1
% 

-
18.9

% 
0 0 

85.
1% 

67.
1% 

-
18.
0% 

0 0 

Palca 
Highl
ands 

C 
56.9

% 
37.2

% 

-
19.8

% 
0 0 

77.0
% 

60.1
% 

-
16.9

% 
0 0 

84.
3% 

70.
7% 

-
13.
6% 

0 0 

San 
Lucas 

Highl
ands 

C 
49.3

% 
31.2

% 

-
18.2

% 
0 0 

73.3
% 

57.0
% 

-
16.4

% 
0 0 

82.
1% 

71.
2% 

-
10.
9% 

0 0 



Ichoca 
Highl
ands 

B 
36.8

% 
19.6

% 

-
17.1

% 
0 0 

62.2
% 

28.8
% 

-
33.5

% 
1 0 

72.
6% 

34.
6% 

-
38.
0% 

1 0 

Puna 
Highl
ands 

C 
42.1

% 
25.2

% 

-
17.0

% 
0 0 

68.4
% 

43.8
% 

-
24.5

% 
0 0 

77.
6% 

48.
1% 

-
29.
5% 

0 0 

Quillac
as 

Highl
ands 

A 
45.6

% 
29.3

% 

-
16.3

% 
0 0 

66.0
% 

39.5
% 

-
26.5

% 
0 0 

75.
0% 

45.
3% 

-
29.
7% 

0 0 

Corque 
Highl
ands 

B 
40.6

% 
26.0

% 

-
14.6

% 
0 0 

63.1
% 

40.8
% 

-
22.3

% 
0 0 

72.
6% 

49.
2% 

-
23.
4% 

0 0 

Caripuy
o 

Highl
ands 

B 
43.3

% 
31.4

% 

-
11.9

% 
0 0 

78.3
% 

61.2
% 

-
17.1

% 
0 0 

88.
5% 

75.
7% 

-
12.
8% 

0 0 

Poopó 
Highl
ands 

B 
24.9

% 
13.6

% 

-
11.2

% 
0 0 

51.4
% 

33.9
% 

-
17.5

% 
0 0 

63.
4% 

41.
6% 

-
21.
7% 

0 0 

Tarabu
co 

Highl
ands 

C 
50.9

% 
39.9

% 

-
11.0

% 
0 0 

74.9
% 

67.5
% 

-
7.5

% 
0 0 

83.
5% 

77.
9% 

-
5.6

% 
0 0 

Caiza D 
Highl
ands 

B 
50.2

% 
43.9

% 

-
6.3

% 
0 0 

74.0
% 

68.2
% 

-
5.8

% 
0 0 

81.
9% 

71.
5% 

-
10.
4% 

0 0 

Yampar
áez 

Highl
ands 

B 
45.6

% 
39.4

% 

-
6.2

% 
0 0 

68.1
% 

60.6
% 

-
7.5

% 
0 0 

77.
1% 

70.
6% 

-
6.5

% 
0 0 

Tomav
e 

Highl
ands 

B 
40.8

% 
35.9

% 

-
4.9

% 
0 0 

70.4
% 

57.7
% 

-
12.8

% 
0 0 

80.
7% 

63.
8% 

-
16.
9% 

0 0 

Coroco
ro 

Highl
ands 

B 
39.9

% 
35.4

% 

-
4.5

% 
0 0 

62.5
% 

59.4
% 

-
3.1

% 
0 0 

72.
3% 

70.
8% 

-
1.5

% 
0 0 

Malla 
Highl
ands 

A 
39.9

% 
35.7

% 

-
4.3

% 
0 0 

63.2
% 

63.3
% 

0.2
% 

0 1 
72.
8% 

73.
4% 

0.6
% 

0 1 



Human
ata 

Highl
ands 

B 
26.7

% 
23.5

% 

-
3.2

% 
0 0 

58.5
% 

4.8% 
-

53.7
% 

1 0 
71.
3% 

6.1
% 

-
65.
2% 

1 0 

Llica 
Highl
ands 

A 
57.9

% 
56.3

% 

-
1.6

% 
0 0 

74.8
% 

70.4
% 

-
4.5

% 
0 0 

81.
6% 

76.
4% 

-
5.2

% 
0 0 

Colque
chaca 

Highl
ands 

C 
37.9

% 
36.5

% 

-
1.3

% 
0 0 

66.4
% 

41.5
% 

-
24.9

% 
0 0 

77.
3% 

51.
3% 

-
26.
0% 

0 0 

Betanz
os 

Highl
ands 

C 
53.0

% 
52.3

% 

-
0.6

% 
0 0 

75.7
% 

76.8
% 

1.1
% 

0 1 
83.
8% 

86.
1% 

2.3
% 

0 1 

Sabaya 
Highl
ands 

B 
54.2

% 
54.0

% 

-
0.3

% 
0 0 

71.6
% 

67.3
% 

-
4.4

% 
0 0 

78.
8% 

73.
0% 

-
5.8

% 
0 0 

Culpina 
Valle
ys 

C 
57.1

% 
19.1

% 

-
38.0

% 
1 0 

77.2
% 

21.9
% 

-
55.3

% 
1 0 

84.
4% 

22.
8% 

-
61.
5% 

1 0 

Incahu
asi 

Valle
ys 

B 
56.8

% 
28.5

% 

-
28.3

% 
0 0 

77.7
% 

41.0
% 

-
36.7

% 
0 0 

84.
9% 

46.
8% 

-
38.
1% 

0 0 

Inquisiv
i 

Valle
ys 

B 
33.2

% 
5.3% 

-
28.0

% 
1 0 

60.3
% 

22.5
% 

-
37.8

% 
1 0 

71.
5% 

34.
1% 

-
37.
4% 

1 0 

Tarvita 
Valle
ys 

B 
39.9

% 
12.9

% 

-
27.0

% 
1 0 

62.2
% 

23.6
% 

-
38.5

% 
1 0 

71.
7% 

30.
7% 

-
41.
1% 

1 0 

El Villar 
Valle
ys 

A 
47.0

% 
23.8

% 

-
23.2

% 
0 0 

66.7
% 

38.7
% 

-
28.0

% 
0 0 

75.
1% 

46.
7% 

-
28.
4% 

0 0 

Presto 
Valle
ys 

B 
44.4

% 
27.7

% 

-
16.7

% 
0 0 

68.6
% 

54.3
% 

-
14.3

% 
0 0 

78.
1% 

68.
1% 

-
10.
0% 

0 0 

Mojoco
ya 

Valle
ys 

B 
59.2

% 
42.6

% 

-
16.7

% 
0 0 

78.7
% 

60.2
% 

-
18.6

% 
0 0 

85.
6% 

68.
8% 

-
16.
8% 

0 0 



Acasio 
Valle
ys 

B 
31.5

% 
18.4

% 

-
13.0

% 
0 0 

58.9
% 

44.6
% 

-
14.3

% 
0 0 

70.
5% 

54.
1% 

-
16.
4% 

0 0 

Villa 
Liberta
d 
Licoma 

Valle
ys 

A 
58.8

% 
50.5

% 

-
8.3

% 
0 0 

78.2
% 

66.3
% 

-
11.9

% 
0 0 

85.
2% 

74.
4% 

-
10.
9% 

0 0 

Tomina 
Valle
ys 

B 
57.9

% 
52.4

% 

-
5.5

% 
0 0 

76.2
% 

64.9
% 

-
11.3

% 
0 0 

83.
1% 

69.
9% 

-
13.
3% 

0 0 

Toro 
Toro 

Valle
ys 

B 
52.0

% 
48.6

% 

-
3.4

% 
0 0 

75.2
% 

75.5
% 

0.4
% 

0 1 
83.
1% 

81.
7% 

-
1.4

% 
0 0 

Source: Own elaboration 
 

e. Characterization of the pockets of poverty 

To better understand the differences in the speed of progress in reducing energy poverty, 
we compared the characteristics of municipalities classified as poverty pockets with those in 
other groups. We used data from the Atlas of Sustainable Development Goals of Bolivia, 
which provides detailed municipal-level information on various aspects such as poverty 
levels, health, education, and more.  

Based on the literature on poverty determinants, variables such as urbanization (Ren et al., 
2017; Abbas et al., 2020), education (Motuma, 2020; Qurat-ul-Ann and Mizra, 2020; Eyasu, 
2020), population growth rate (Salvador, 2018; Vista and Murayama, 2011), elevation 
(topographic) (Salvación, 2018; Vista and Murayama, 2011), access to sanitation or clean 
water (Vista and Murayama, 2011), labor market variables such as unemployment rate, 
occupation, or labor force (Motuma, 2016; Salvación, 2018; Abbas et al., 2020), region (Islam 
and Hossain, 2015), and distance to health centers (Salvación, 2018) are selected for the 
characterization.  

Our results are summarized in Table 8, which provides a comparison between municipalities 
classified as energy poverty pockets and those in groups 1, 2, and 4. Column 2 compares 
poverty pockets with all other municipalities. Column 3 compares group 3 with group 1, while 
Column 4 compares group 3 with group 2. Finally, column 5 contrasts group 3 with group 4. 

 



Table 8: Characterization of municipalities 
 

 (1) (2) (3) (4) (5) 

      

Chronic malnutrition in children (< 5 years), 
2016 (%) 

0.0065*
** 

0.0050*
** 

0.0091*
** 

0.0057* 0.0085*
** 

 (2.79) (2.66) (2.88) (1.90) (3.71) 

      

Population with higher education (>= 19 
years), 2012 (%) 

0.0009     

 (0.18)     

      

Literacy rate (>= 15 years), 2012 (%) 0.0032   -
0.0089*

* 

 

 (0.37)   (-2.06)  

      

Drinking water coverage, 2017 (% of 
population) 

0.0024   0.0044*
* 

 

 (1.62)   (2.42)  

      

Sanitation coverage, 2017 (% of 
population) 

-0.0017 -
0.0027*

* 

 -
0.0035*

* 

 

 (-1.30) (-2.33)  (-2.44)  

      

Overall participation rate of men (>= 10 
years), 2012 (%) 

-0.0075 -
0.0098*

** 

-
0.0148*

* 

  

 (-1.59) (-2.93) (-2.36)   



      

Overall participation rate of women (>= 10 
years), 2012 (%) 

0.0008     

 (0.30)     

      

Density of bank branches, 2018 (per 
100,000 inhabitants) 

-0.0003     

 (-0.17)     

      

Number of railway/primary roads 
entering/exiting the municipality, 2019 

-0.0035     

 (-0.16)     

      

Gini coefficient of years of education, 2012 0.9958 0.8549*
** 

1.4456*
** 

 0.8078*
** 

 (1.60) (3.90) (3.74)  (2.80) 

      

Urbanization rate, 2012 (% of population) -
0.0024* 

-
0.0026*

** 

 -
0.0037*

** 

-
0.0021*

* 

 (-1.75) (-2.93)  (-2.94) (-2.01) 

      

Population Growth -0.0069   -
0.0206*

** 

 

 (-1.29)   (-3.36)  

      

Population Logarithm 0.0390     

 (1.33)     



      

Average Maximum Temperature -0.0104    -
0.0261*

** 

 (-1.55)    (-6.94) 

Observations 317 317 156 161 128 

R2      

t statistics in parentheses 
* p<0.10, ** p<0.05, *** p<0.010 

 

The characterization shows energy poverty pockets have lower urbanization rates compared 
to other municipalities (column 2) and to those in groups 2 and 4, which experienced rapid 
poverty reduction. This aligns with Ren et al. (2017), who found a negative link between 
poverty incidence and urbanization rates. Lower urbanization is associated with reduced 
access to education and health services, greater distances between communities, and higher 
vulnerability to shocks (Qurat-ul-Ann and Mirza, 2020). Additionally, poverty pockets have 
slower population growth, further limiting access to infrastructure and services. 

The effects of having limited access to healthcare is evident in the higher rates of chronic 
malnutrition among children in group 3 municipalities. The lack of nearby health centers 
likely hinders access to essential medical services and nutritional supplements, given this 
municipalities have dispersed communities, making health centers hard to reach due to poor 
road conditions, as noted by Salvacion (2020). 

Additionally, the lower male labor force participation rate in these areas suggests a limited 
job market, exacerbated by the small population size and insufficient services. 

In terms of education, municipalities classified as energy poverty pockets show a higher Gini 
coefficient for educational attainment, indicating greater inequality in education. This finding 
aligns with existing literature suggesting that higher educational attainment is linked to lower 
multidimensional energy poverty (Crentsil et al., 2020). This elevated Gini coefficient further 
reflects significant educational inequality, which is consistent with studies demonstrating a 
negative relationship between higher educational attainment and poverty (Eshetu et al., 
2022). Moreover, the greater educational inequality in energy poverty pockets compared to 
municipalities that have made significant progress in reducing energy poverty supports 
Eyasu’s (2020) findings, which highlight the positive impact of higher educational attainment 
on household welfare, particularly in rural poverty contexts. 

In terms of literacy rates, energy poverty pockets exhibit lower literacy rates compared to 
other municipalities. This suggests lower educational attainment in these areas, highlighting 



a negative relationship between energy poverty incidence and education levels. These 
findings are consistent with existing literature, which shows that households with higher 
educational attainment are less likely to experience energy poverty (Benson et al., 2005; 
Qurat-ul-Ann and Mirza, 2020; Eyasu, 2020). 

Geographic factors also play an important role, as noted by Abbas et al. (2020). Mountainous 
terrain can obstruct infrastructure investment, adversely affecting the expansion of services 
such as electricity, roads, and educational and health facilities. Since many energy poverty 
pockets are located in the Andean and valley regions at elevations above 3,000 meters, their 
challenging geography likely contributes to these issues. 

 

5. Final Remarks 
 
Access to clean and affordable energy is essential for household well-being and broader 
economic development, playing a crucial role in reducing poverty. Electricity is now 
fundamental for basic needs, such as education and health. Recognizing this, the literature 
on energy poverty has expanded. Understanding the state and evolution of energy poverty 
is vital for effective policymaking, yet there are few rigorous studies focusing on Bolivia, the 
poorest country in South America. With this study, we seek to fill this knowledge gap by 
assessing energy poverty levels and trends at the municipal level, the smallest local 
government jurisdiction in the country. Our results are promising in that, overall, we find that 
the country has made progress towards eradicating energy poverty, and that this happens 
around a converging pattern: energy poverty is reducing and so are the poverty gaps across 
municipalities. However, we also find that there are some municipalities that are being left 
behind in this positive process; we term them pockets of energy poverty.  
  
To measure energy poverty, we use three absolute poverty lines based on the Tarifa 
Dignidad, a universal public subsidy that reduces energy bills for households with very low 
consumption levels. Estimating the first three indices of the FGT class of decomposable 
poverty measures to ensure coherence between national and subnational poverty levels, we 
find that energy poverty is markedly concentrated in small municipalities (population-wise) 
located in the highlands.  
  
Simply comparing the first and last periods of observation, we also find that the incidence of 
extreme energy poverty (consumption < 25 kWh/month) has decreased over time for 201 
out of 327 municipalities. In a deeper assessment, we conducted a β-convergence analysis 
to compare expected and observed rates of energy poverty reduction across municipalities. 
We do find compelling evidence of convergence. Building on this analysis, we classified 
municipalities according to their starting positions—advantaged or disadvantaged—and 
their progress rates, whether rapid or slow. We thus identified 64 municipalities as pockets 
of energy poverty, which are home to around 806’000 people (7.3%) and characterized by 
both high initial levels of energy poverty and slow progress in reducing it. A closer 
examination of these municipalities revealed that their population had systematically lower 



levels of education and health outcomes compared to municipalities that started from a 
more advantaged situation. These municipalities also have lower urbanization and slower 
population growth compared to the rest of the country. 
  
Projections for 2030 suggest an increase in energy poverty in 25 of the 64 identified pockets 
of energy poverty. Additionally, the energy poverty gap is expected to widen in 19 of these 
municipalities, with households already below the poverty line falling further behind in 
energy consumption levels. Moreover, 13 of these municipalities are projected to see greater 
severity of extreme energy poverty, with the poorest households consuming significantly less 
electricity than the rest of the poor households. 
  
Our study shows that Bolivia, as a whole, has made significant progress in reducing energy 
poverty. We show, moreover, that this progress is actually widespread across the 327 
municipalities – as we find compelling evidence of a convergence pattern of energy poverty 
reduction. However, our study focuses mainly on the lasting need to ensure that all 
municipalities are indeed part of this positive dynamics. Clearly, the 806’000 people living in 
the 64 municipalities that we identify as being pockets of energy poverty are at a very high 
risk of simply being left behind in the national development process. 
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Appendix 
 
Table A1: Unconditional Beta Convergence - Conditional Poverty Incidence FGT0 with 50% 
Tarifa Dignidad 
 

 (1) (2) (3) (4) (5) (6) (7) 

  Δ FGT0 Δ FGT0  Δ FGT0 Δ FGT0 Δ FGT0  Δ FGT0  Δ FGT0 

FGT0P1 -
0.0013**

* 

-
0.0017** 

-
0.0019**

* 

-
0.0043**

* 

-
0.0055**

* 

-
0.0041**

* 

-
0.0052**

* 

 (-2.93) (-2.52) (-2.83) (-6.07) (-6.13) (-5.25) (-6.30) 

        

Δ Pob  -0.0001    0.0000 0.0001 

  (-0.50)    (0.35) (0.57) 

        

B   -0.0007  -0.0003  -0.0004 

   (-0.80)  (-0.41)  (-0.48) 

        

C   -0.0015  -0.0012  -0.0014 

   (-1.36)  (-1.25)  (-1.22) 

        

D   -0.0027*  -
0.0043**

* 

 -
0.0046** 

   (-1.81)  (-2.84)  (-2.59) 

        

Valles    -
0.0019**

* 

-
0.0020**

* 

-
0.0020**

* 

-
0.0021**

* 

    (-3.77) (-4.13) (-3.50) (-3.91) 



        

Llanos    -
0.0067**

* 

-
0.0072**

* 

-
0.0068**

* 

-
0.0075**

* 

    (-6.22) (-6.75) (-6.13) (-6.52) 

        

Constant
e 

-
0.0023**

* 

-
0.0024**

* 

-
0.0017** 

-
0.0017**

* 

-
0.0015** 

-
0.0016**

* 

-0.0013 

 (-6.53) (-5.91) (-2.42) (-5.46) (-2.40) (-3.88) (-1.35) 

N 320 320 320 320 320 320 320 

R2 0.030 0.034 0.047 0.221 0.262 0.223 0.267 

 
t statistics in parentheses 
* p<0.10, ** p<0.05, *** p<0.010 

 
 

Table A2: Unconditional Beta Convergence - Conditional Poverty Incidence FGT0 with 25% 
Tarifa Dignidad 
 

 (1) (2) (3) (4) (5) (6) (7) 

  Δ FGT0  Δ FGT0  Δ FGT0 Δ FGT0 Δ FGT0 Δ FGT0 Δ FGT0 

FGT0P1 -
0.0052** 

-
0.0069** 

-
0.0065**

* 

-
0.0094**

* 

-
0.0112**

* 

-
0.0098**

* 

-
0.0114**

* 

 (-2.51) (-2.33) (-2.66) (-3.31) (-3.69) (-3.11) (-3.52) 

        

Δ Pob  -0.0004    -0.0001 -0.0001 

  (-1.29)    (-0.63) (-0.30) 

        

B   -0.0014  -0.0006  -0.0005 



   (-0.92)  (-0.52)  (-0.38) 

        

C   -0.0029*  -0.0024*  -0.0023 

   (-1.83)  (-1.72)  (-1.36) 

        

D   -
0.0094** 

 -
0.0110**

* 

 -
0.0107**

* 

   (-2.27)  (-2.90)  (-2.82) 

        

Valles    -
0.0053**

* 

-
0.0052**

* 

-
0.0050**

* 

-
0.0050**

* 

    (-3.03) (-3.32) (-3.23) (-3.53) 

        

Llanos    -
0.0140**

* 

-
0.0148**

* 

-
0.0133**

* 

-
0.0145**

* 

    (-3.26) (-3.60) (-3.60) (-3.92) 

        

Constant
e 

-
0.0069**

* 

-
0.0081**

* 

-
0.0062**

* 

-
0.0060**

* 

-
0.0060**

* 

-
0.0065**

* 

-
0.0063**

* 

 (-3.25) (-3.02) (-3.01) (-4.21) (-3.96) (-3.49) (-2.90) 

N 320 320 320 320 320 320 320 

R2 0.191 0.238 0.235 0.416 0.478 0.421 0.479 

 
t statistics in parentheses 
* p<0.10, ** p<0.05, *** p<0.010 


